0.2. The first peak is dominated by axial convection and the second by Taylor-type diffusion which is a mixture of axial convection and radial diffusoin. The first peak occurs close to t/\bar{t} equal about 0.5 and the second near 1.0

Secondary flows generated by natural convection inhibit the formation of double peaks by reducing radial concentration gradients much more effectively than molecular diffusion can when acting alone; this also reduces the apparent Taylor diffusion coefficient.

Elution curves with double or single peaks observed over the range of conditions studied can be plotted conveniently as reduced dimensionless concentration versus reduced time for a fixed dimensionless distance downstream from the sample injection point. Such plots correlate elution curves whether or not natural convection is significant.

NOTATION

```
C
           = solute concentratoin
          = initial solute concentration
C_0
           = molecular diffusion coefficient
D
           = gravitational constant
           = Grashof number based on density difference =
Gr
             8R^3g\Delta\rho/\rho/v^2
           = Taylor dispersion coefficient
k
          = tube length from injection point to detector
L
           = mass of solute in sample = \pi R^2 x_S C_0
m
           = Peclet number = 2uR/D
Pe
R
           = tube radius
           = Reynolds number = 2uR/v
Re
           = Schmidt number = v/D
Sc
           = time
t
           = mean residence time L/u
t/\bar{t}
           = reduced time
           = average fluid velocity
u
           = axial distance from sample injection point
x
           = slug length
x_S
X
           = dimensionless distance = x/RN_{Pe}
X_{S}
           = dimensionless slug length = x_S/RPe
ρ
           = solvent density
           = density of injected sample
\rho_{S}
\Delta \rho = \rho_{\rm S} = difference between sample and solvent density
           = dimensionless time = tD/R^2
           = kinematic viscosity
```

ACKNOWLEDGMENT

This work was supported in part by NSF Grant CPE8112519.

LITERATURE CITED

Andersson, B., and T. Berglin, "Dispersion in Laminar Flow Through a Circular Tube," Proc. Roy. Soc. Lond., A377, 251 (1981).

Aris, R., "On the Dispersion of a Solute in a Fluid Flowing Through a Tube," Ibid., 235A, 67 (1956).

Atwood, J. G., and M. J. E. Golay, "Dispersion of Peaks by Short Straight Open Tubes in Liquid Chromatography Systems," J. Chromat., 218,

Benson, D., "An Experimental Study of Dispersion of Buoyant and Non-Buoyant Samples at Short Times," MS Thesis, SUNY-Buffalo (1983).

Caro, C. G., "The Dispersion of Indicator Flowing Through Simplified

Models of the Circulation and Its Relevance to Velocity Profile in Blood Vessels," J. Physiol., 185, 501 (1966).

Erdogan, M. E., and P. C. Chatwin, "The Effects of Curvature and Buoyancy on the Laminar Dispersion of Solute in a Horizontal Tube,' J. Fluid Mech., 29, 465 (1967).

Evans, D. F., C. Chan, and B. C. Lamartine, "The Effect of Change Upon Mobility. A Critical Examination of the Zwanzig Equation," J. Am. Chem. Soc., 99, 6492 (1977).

Gill, W. N., and V. Ananthakrishnan, "Laminar Dispersion in Capillaries: Part IVs The Slug Stimulus," AIChE J., 13, 801 (1967).

Golay, M. J. E. and J. G. Atwood, "Early Stages of a Sample Injected in

Poiseuille Flow," J. Chromat., 186, 353 (1979).

Mayock, K., P., J. M. Tarbell, and J. L. Duda, "Numerical Simulation of Solute Dispersion in Laminar Tube Flow," Sep. Sci. Tech., 15, 1285

Nunge, R. J., T. S. Lin, and W. N. Gill, "Laminar Dispersion in Curved

Tubes and Channels," J. Fluid Mech., 51, 363 (1972). Reejhsinghani, N. S., W. N. Gill, and A. J. Barduhn, "Part III. Experiments in Horizontal Tubes Including Observations on Natural Convection Effects," AIChE J., 12, 916 (1966).

Taylor, G. I., "Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube," Proc. Roy Soc. London, A219, 186 (1953).

Manuscript received January 30, 1984; revision received March 6, and accepted

Prediction of the Thermal Conductivity of Gases at High Pressures

M. R. RIAZI and AMIR FAGHRI

Department of Engineering Wright State University Dayton, OH 45435

In the past 40 years, a number of investigators have developed several methods to predict the thermal conductivities of gases at high pressure. Comings and Nathan (1947) suggested the use of a plot of thermal conductivity ratio, k/k^* vs. reduced pressure and reduced temperature. Gamson (1949) proposed the first generalized thermal conductivity correlation to make use of the concept of reduced thermal conductivity, k/k_c , where k_c is the criticalthermal conductivity. Unfortunately, the applicability of this correlation is limited to simple fluids where the assumption of the Enskog theory is applicable. Subsequently, Stiel and Thodos (1964), developed a correlation for predicting the thermal conductivity of gases at high pressure completely apart from corresponding states principles. Using a dimensional analysis approach, they related the residual thermal conductivity, $k - k^*$, to the reduced density, ρ_r .

Most recently, Crooks and Daubert (1979) developed a three-

TABLE 1. CRITICAL THERMAL CONDUCTIVITIES OF HYDROCARBON VAPORS*

Vapor*	Acentric Factor, ω	Crit. Temp. T_c , K	Crit. Pres. P_c , 10^{-5} N/m ²	Crit. Thermal Conductivity k_c , W/m·K
Methane	0.0115	190.6	46.0	0.0312
Ethane	0.0908	305.4	48.8	0.0391
Propane	0.1454	370.0	42.5	0.0433
n-Butane	0.1928	425.2	38.0	0.04777
n-Heptane	0.3506	540.2	27.4	0.0535
Ethene	0.0856	282.4	50.4	0.0379
1-Hexene	0.2848	504.0	31.7	0.0509
1-Heptene	0.358	537.2	28.4	0.0502
1-Octene	0.3858	566.6	26.2	0.0549
Cyclohexane	0.2144	553.4	40.7	0.0533
Benzene	0.2100	562.0	48.9	0.0472
Methylbenzene (Toluene)	0.2566	591.7	41.1	0.0526
Ethylbenzene	0.3011	617.1	36.1	0.0526
1,2-Dimethylbenzene (o-Xylene)	0.3136	630.2	37.3	0.0542
1,3-Dimethylbenzene (m-Xylene)	0.3311	617.0	35.0	0.052
1,4-Dimethylbenzene (p-Xylene)	0.3243	616.2	35.1	0.0528

^{*} Values of ω, Tc, and Pc are taken from Reid et al. (1977).

parameter corresponding states correlation for predicting the thermal conductivity of nonpolar dense gases. They used heat capacity at constant volume as the third parameter in addition to reduced temperature and reduced pressure for the development of their correlation as it is shown in the following form:

$$\frac{k}{k^*} = \frac{C_v'}{C_v} \left[\left(\frac{k}{k^*} \right)' \left(T_r, P_r \right) \right] + \frac{C_v''}{C_v} \left[\left(\frac{k}{k^*} \right)'' \left(T_r, P_r \right) \right] \tag{1}$$

where C_v is the constant-volume heat capacity at the temperature and pressure of interest. C_v and C_v are the translational and internal contribution of heat capacity, respectively:

$$C_v = C_v' + C_v'' \tag{2}$$

Based on the data available on thermal conductivity of gases at high pressure, correlations for calculations of $(k/k^*)'$ and $(k/k^*)''$ were developed, for noncyclic and cyclic hydrocarbon compounds. Accuracy of Crooks' method was much better than Stiel's method and therefore it was recommended by the American Petroleum Institute (1977) as the best method available for predicting the thermal conductivity of dense gases.

The main objective of this work was to develop a Pitzer-type generalized correlation to predict thermal conductivity of gases at high pressures with fewer input parameters than current methods.

TECHNICAL DEVELOPMENTS OF THE PROPOSED GENERALIZED THREE-PARAMETER CORRESPONDING STATES CORRELATION

To use the corresponding states technique for prediction of thermal conductivity of complex gases a third parameter, beside the reduced temperature and pressure is needed. Although several

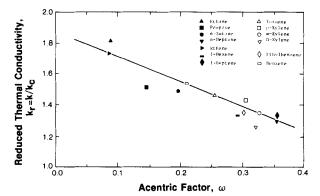


Figure 1. Reduced thermal conductivity versus acentric factor at $T_r = 1.05$ and $P_r = 2.0$.

shape factors have been introduced, the Pitzer acentric factor has been the most successful parameter capable of characterizing complex molecules. The Pitzer three-parameter corresponding states (Pitzer et al., 1955) suggests that the compressibility, Z, of a fluid can be related to the compressibility of a simple fluid $\mathbf{Z}^{(0)}$ and an acentric fluid $\mathbf{Z}^{(1)}$ as follows:

$$Z = Z^{(0)} + \omega Z^{(1)} \tag{3}$$

where ω is the acentric factor of the fluid. $Z^{(0)}$ and $Z^{(1)}$ are functions of T_r and P_r . Application of Eq. 3 for the reduced thermal conductivity, k/k_c suggests that:

$$k_r = \frac{k}{k_c} = k_r^{(0)} + \omega k_r^{(1)} \tag{4}$$

where $k_r^{(0)}$ is the reduced thermal conductivity of simple fluid ($\omega = 0$, as inert gases) and $k_r^{(1)}$ is a complicated function. In using Eq.

Table 2. Effect of Pressure on Vapor Thermal Conductivity, Simple Fluid Term, $k_r^{(1)}$

Reduced Temp.	Reduced Pressure, P_r									
T_r	0.2	0.5	1.0	1.5	2.0	3.0	4.0	6.0	8.0	10.0
1.00	1.1880	1.3307	2.0000	4.1517	4.4282	4.7900	5.2140	5.7989	6.2080	6.5132
1.05	1.3002	1.3640	1.8922	3.2806	3.7990	4.4915	4.7590	5.2817	5.7710	6.2040
1.10	1.4300	1.4810	1.8660	2.5989	3.3334	4.1068	4.4746	4.9502	5.374	5.8812
1.15	1.5182	1.5365	1.8356	2.2978	2.9769	3.8583	4.4676	4.9404	5.3734	5.8760
1.20	1.8311	1.8956	2.1200	2.3983	2.8809	3.5626	4.2067	4.9285	5.3731	5.8699
1.40	2.1838	2.2520	2.3589	2.5291	2.7120	3.3000	4.0020	4.6327	5.2404	5.7656
1.60	2.5971	2.6589	2.7305	2.8572	3.0035	3.3760	3.8239	4.4385	4.8967	5.3031
2.00	3,6763	3.6984	3.7418	3.9161	3.9594	4.137	4.3768	4.7138	5.0462	5.3614
3.00	6.9896	7.0010	7.0310	7.0617	7.1079	7.1452	7.2197	7.4077	7.5915	7.7685

Values of k_c are calculated by Eq. 1 except for methane and ethane which were found by interpolating experimental values.

TABLE 3. EFFECT OF PRESSURE ON VAPOR THERMAL CONDUCTIVITY, CORRECTION TERM, $k_r^{(2)}$

Reduced Temp.					Reduced Pre	essure, P_r				
T_r	0.2	0.5	1.0	1.5	2.0	3.0	4.0	6.0	8.0	10.0
1.00	1.6900	1.6990	2.0000	2.0619	2.3112	2.3140	2.3160	2.3180	2.3210	2.3212
1.05	1.7200	1.7290	1.8100	1.8170	2.1318	2.1912	2.3010	2.3380	2.3398	2.3400
1.10	1.8001	1.8211	1.8300	1.8310	1.9672	2.1334	2.1369	2.3614	2.3988	2.4105
1.15	2.0599	2.0601	2.0661	2.0700	2.0801	2.1269	2.2246	2.3780	2.4618	2.4622
1.20	2.1441	2.1539	2.1629	2.1681	2.1689	2.1901	2.2319	2.3981	2.4640	2.4701
1.40	2.6496	2.6772	2.6865	2.6889	2.6900	2.6911	2.7001	2.7119	2.8079	2.8810
1.60	3.2184	3.2448	3.2559	3.2886	3.3142	3.3292	3.3343	3.3352	3.3869	3.4525
2.00	4.5222	4.5330	4.5465	4.6871	4.6378	4.7108	4.8148	4.8119	4.8850	4.9885
3.00	8.4002	8.4158	8.4234	8.4503	8.4504	8.5038	8.6083	8.6204	8.6732	8.7454

4, two facts must be kept in mind: that the critical thermal conductivity of many substances is not known, and $k_r^{(0)}$ and $k_r^{(1)}$ must be determined as functions of reduced temperature and pressure. Consequently, a bank of data on thermal conductivity of 16 hydrocarbons listed in Table 1 was prepared (Crooks and Daubert, 1979). The critical thermal conductivity, k_c , was determined for each compound by interpolation of experimental data or by using Eq. 1 at $T = T_c$ and $P = P_c$. Values of k_c for 16 hydrocarbons used in this work are also given in Table 1.

In order to show that the acentric factor is capable of correlating the reduced thermal conductivity, at $T_r=1.05$ and $P_r=2$ where experimental data were available for 13 hydrocarbons, k_r for each compound was determined. A plot of k_r vs. ω is shown in Figure 1. It is obvious that at a given T_r and P_r , the relationship between k_r and ω is almost linear. Since the data available are for hydrocarbons having acentric factors in the range of 0.09–0.358, k_r at $\omega=0$ and $\omega=0.5$ can be determined from the plot of k_r vs. ω . The following linear relation between k_r and ω , when ω ranges from 0 to 0.5, is proposed.

$$k_r = (0.5 - \omega)k_r^{(1)} + \omega k_r^{(2)} \tag{5}$$

where

$$k_r^{(1)} = 2k_r \text{ (at } \omega = 0.0)$$

$$k_r^{(2)} = 2k_r \text{ (at } \omega = 0.5)$$

At each T_r and P_r , a plot similar to Figure 1 can be prepared, and from the intercepts of the line with the k_r axis at $\omega = 0$ and $\omega = 0.5$, values of $k_r^{(2)}$ and $k_r^{(2)}$ can be determined. Since complete data for all the hydrocarbons listed in Table 1 were not available, compounds; ethane, 1-heptene, and benzene were chosen as the ref-

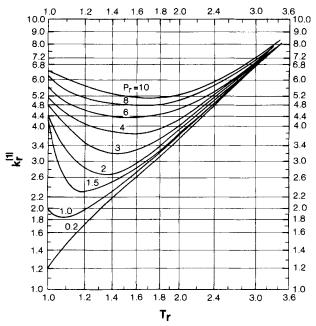


Figure 2. Generalized chart for $k_r^{(1)}$.

erence compounds. At every T_r and P_r , values of $k_r^{(1)}$ and $k_r^{(2)}$ with respect to the reference compounds were determined and they are listed in Tables 2 and 3. Graphical representation of these Tables are shown in Figures 2 and 3.

Experimental thermal conductivity data for 16 compounds listed in Table 1 were used for the evaluation of the proposed correlation. For each compound reduced thermal conductivity at T_r and P_r which values of $k_r^{(1)}$ and $k_r^{(2)}$ are given in Tables 2 and 3 was determined through interpolation of experimental values and then thermal conductivity was determined as follows:

$$k = k_c k_r \tag{6}$$

A summary of results is shown in Table 4. Average deviation of 5% was observed for 608 data points. It is quite obvious that some part of the errors involved in these predictions is due to the accuracy of values of k_c listed in Table 1. Equation 5 can also be used for prediction of thermal conductivity if at least at one point the thermal conductivity is known:

$$k_2 = k_1 \frac{k_{r_1}}{k_{r_2}} \tag{7}$$

 $k_{\rm r}^{(1)}$ and $k_{\rm r}^{(2)}$ can be determined from Tables 2 and 3 or from Figures 2 and 3 and since $k_{\rm 1}$ (at some temperature and pressure) is known, $k_{\rm 2}$ (at the temperature and pressure of interest) can be calculated. In this manner, less error will be observed. However, the accuracy of the proposed correlation is about the accuracy of experimental values for thermal conductivity of dense gases at high pressures. Average deviations for predicting thermal conductivity from Eq. 1 (Crooks and Daubert's method) was about 4.5%.

Although the accuracy of the proposed correlation is a little less than the accuracy of Eq. 1, it is in more general form and it is much

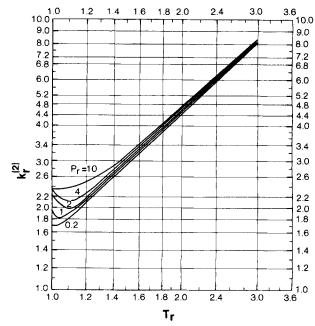


Figure 3. Generalized chart for $k_r^{(2)}$.

TABLE 4. EVALUATION OF THE PROPOSED CORRELATION FOR THE PREDICTION OF THERMAL CONDUCTIVITY OF PURE COMPONENT VAPORS

	Number of Points	Reduced Temp.	Reduced Pres.	Thermal Conductivity	Deviatio	nc %**
Compound	Evaluated	Range	Range	Range, W/m·K*	Avg.	Max.
Methane	35	1.20-3.00	0.2-10.0	0.032-0.104	8.8	28.9
Ethane	90	1.00-3.00	0.2-10.0	0.022 - 0.094	3.1	10.0
Propane	54	1.00-1.20	0.5-10.0	0.031 - 0.097	10.4	19.0
n-Butane	24	1.00-1.05	0.2 - 6.0	0.035-0.104	4.2	8.0
n-Heptane	18	1.00-1.10	1.5-8.0	0.069 - 0.095	3.0	3.9
Ethene	30	1.00-1.20	1.0-6.0	0.026-0.097	3.5	10.1
1-Hexene	54	1.00-1.40	0.5-10.0	0.035-0.090	4.1	10.0
1-Heptene	90	1.00-3.00	0.2 - 10.0	0.042 - 0.095	3.1	11.6
1-Octene	5	1.00-1.00	2.0-8.0	0.073-0.083	5.9	9.2
Cyclohexane	18	1.05-1.15	1.5-8.00	0.048 - 1.02	11.2	16.0
Benzene	30	1.00-1.20	1.5-8.0	0.057-0.092	8.1	16.0
Methylbenzene (Toluene)	24	1.00-1.15	1.0-6.0	0.052-0.093	5.1	12.0
Ethylbenzene	27	1.00-1.10	1.5-10.0	0.062-0.095	3.5	6.0
1,2-Dimethylbenzene (o-Xylene)	32	1.00-1.15	1.0-10.0	0.059-0.093	5.2	10.8
1,3-Dimethylbenzene (m-Xylene)	32	1.00-1.15	1.0–10.0	0.061-0.093	3.2	10.0
1,4-Dimethylbenzene (p-Xylene)	45	1.00-1.20	0.5-10.0	0.045-0.097	3.8	15.2
	608	1.00-3.00	0.2 - 10.0	0.022 - 0.104	5.0	28.9

[•] Experimental values of thermal conductivity from Crooks and Daubert (1979).

Average deviation =
$$\frac{1}{n} \sum_{n} |E|$$

simpler to use. In the proposed correlation, critical temperature and pressure, critical thermal conductivity, and the acentric factor of the substance must be known in order to predict its thermal conductivity at any temperature and pressure. If critical thermal conductivity is not known, then at least thermal conductivity at one temperature and pressure must be known for prediction at other temperatures and pressures. For computer uses, appropriate analytical correlations based on the data in Tables 2 and 3 can be developed for $k_r^{(1)}$ and $k_r^{(2)}$ as functions of T_r and P_r .

ACKNOWLEDGMENT

Special thanks to T. E. Daubert of The Pennsylvania State University for providing experimental data used in this work.

NOTATION

C_{v}	= constant-volume heat capacity
$C_{v} \\ C_{v}' \\ C_{v}''$	= translational contribution of C_v
$C_n^{"}$	= internal contribution of C_v
k	= thermal conductivity
k_c	= critical thermal conductivity
k_r	= reduced thermal conductivity
k*	= thermal conductivity at low pressure
$k_r^{(1)}, k_r^{(2)}$	= reduced thermal conductivity of simple and acentric
	fluids defined in Eq. 5
k_{rl}	= reduced thermal conductivity at T_{rl} and P_{rl}
$(k/k^*)'$	= translational contribution of (k/k^*)
(k/k*)''	
$(k/k^*)''$	= internal contribution of (k/k^*)

 P_c = critical pressure P_r = reduced pressure T = temperature T_c = critical temperature T_r = reduced temperature T_c = compressibility factor T_c = critical compressibility T_c = reduced compressibility T_c = reduced density T_c = acentric factor

LITERATURE CITED

American Petroleum Institute, "Technical Data Book," Petroleum Refining, Ch. 12, 3rd Ed., Washington, DC (1977).

Comings, E. W., and M. F. Nathan, "Thermal Conductivity of Gases at High Pressures," *Ind. Eng. Chem.*, 39, 964 (1947).

Crooks, R. G., and T. E. Daubert, "Prediction of The Thermal Conductivity of Dense Hydrocarbon Gases," *Ind. Eng. Chem. Process Des. Dev.*, 18(3), 506 (1979).

Gamson, B. W., "A Generalized Thermal Conductivity Correlation for Gas State," Chem. Eng. Prog., 45, 154 (1949).
Pitzer, K. S., et al., "The Volumetric and Thermodynamic Properties of

Pitzer, K. S., et al., "The Volumetric and Thermodynamic Properties of Fluids II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization," J. Am. Chem. Soc., 77, 3433 (1955).

Reid, R. C., J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 3rd Ed., McGraw-Hill, New York, 629 (1977).

Stiel, L. I. and G. Thodos, "The Thermal Conductivity of Nonpolar Substances in the Dense Gaseous and Liquid Regions," *AIChE J.*, **10**(1), 26 (1964).

Manuscript received March 16, and accepted March 22, 1984.

= pressure

^{** %} deviation = $E = \frac{\text{predicted value-experimental value}}{\text{experimental value}} \times 100$

n = number of data points